
6. CONCLUSIONS 

This numerical modeling study has investigated the fundamental physics of galvanic 

source EM methods and demonstrated how galvanic source EM methods can sense a thin 

resistor effectively.  

Unlike the loop TEM and MT methods, the GESTEM method generates vertical as well as 

horizontal transient currents. The rapidly diffusing and highly concentrated vertical 

current interacts with a thin horizontal resistor and thus can produce a measurable 

perturbation in the surface electric field. In contrast, the loop TEM and MT methods fail 

to sense a thin horizontal resistor because their responses are inductive. In using the 

GESTEM method, the magnitude of perturbation to a thin resistor depends on the source 

waveform. When the step-off waveform that mainly consists of low frequency signals is 

employed, the perturbation due to a thin resistor is relatively small. An alternative to 

analyzing the electric fields directly from the step-off responses is to take the time-

derivatives in order to approximate impulse responses and thus provide higher frequency 

information. The detailed analysis of non-standard transient EM transmitter waveforms 

and their sensitivities to resistors is necessary and left for future work. In order to improve 

the magnitude of perturbation, especially due to a localized small 3-D resistor, the 

diffusion angle of the vertical transient current, 45º should be considered to make vertical 

currents coupled to a resistive target efficiently. The major drawback of the GESTEM 

method lies in the fact that the GESTEM sounding is very sensitive to near-surface 
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inhomogeneity. Thus, it is required to develop 2-D or 3-D interoperation schemes rather 

than force layered-earth models to fit the responses of 2-D or 3-D structures.

The marine FDCSEM and TDCSEM methods have been investigated numerically, and 

compared to the MMT method. In contrast to the MMT method, the marine FDCSEM and 

TDCSEM methods are very sensitive to thin resistive hydrocarbon reservoirs at depth, 

since their response is both galvanic and inductive. For the FDCSEM method, the location 

of the normalized peak response is determined by where the airwave starts to dominate 

seafloor EM responses in the background model. This point is a function of source 

frequency, seawater depth and seafloor resistivity. The peak magnitude depends on 

whether the high concentration of vertical currents can reach and interact with the 

reservoir effectively or not. Bathymetry is another important factor for the peak magnitude 

and thus high quality bathymetry data should be collected for an accurate interpretation of 

the FDCSEM data. The magnetic field responses are similar to electric ones but the 

benefit of using magnetic field responses is that the noise level contour of the magnetic 

receiver theoretically allows for greater surface coverage compared to that of the electric 

receiver.

Like the GESTEM method, the TDCSEM method also requires the use of a proper 

transient EM pulse such that relatively high frequencies are produced. The impulse 

response of the TDCSEM method is characterized by two-path diffusion of the EM signal. 

The initial response is caused by faster signal diffusion through the less conductive 
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seafloor, while the later arrivals result from slower diffusion through the more conductive 

seawater. Therefore, at larger separations, the effects of the seafloor and seawater are 

somewhat separable. This can be useful in relieving the airwave problem associated with 

the FDCSEM method in shallow marine environments. The detailed investigation of non-

standard TDCSEM source waveforms and their responses is left for future work. 

This modeling study illustrates that the vertical electric field measurements on the sea 

floor can be a useful additional measurement for both the marine FDCSEM and TDCSEM 

methods. In contrast, the vertical electric field measurement is not useful for the MMT 

method. 
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